MATHEMATICAL LOGIC HOMEWORK 6

Due Monday April 15.

Let $\phi_{prov-T}(e)$ be the formula in the language of arithmetic which states that e codes a formula ϕ_e and $T \vdash \phi_e$. Also for a formula ϕ , $\lceil \phi \rceil$ denotes the G'odel number of ϕ

Problem 1. Determine which of the following is true of false for an arbitrary sentence τ , and prove your answer.

- (1) If $PA \vdash \tau$, then $PA \vdash \phi_{prov-PA}(\ulcorner \tau \urcorner)$.
- (2) $PA \vdash \tau \rightarrow \phi_{prov-PA}(\ulcorner \tau \urcorner).$ (3) $PA \vdash \phi_{prov-PA}(\ulcorner \tau \urcorner) \rightarrow \tau.$

Problem 2. Show that if ϕ is Π_1 , then $PA + Con_{PA}(\ulcorner \phi \urcorner) \vdash \phi$. Here $Con_{PA}(\ulcorner \phi \urcorner)$ is the formula stating that PA does not refute ϕ i.e. $\neg \phi_{prov-PA}(\ulcorner \neg \phi \urcorner)$.

Problem 3. Suppose $f : \mathbb{N} \to \mathbb{N}$ is total recursive. Prove that $A = \bigcup_n W_{f(n)}$ is r.e.

Problem 4. (a) (Reduction) Suppose that A, B are r.e. sets. Prove that there are disjoint r.e. sets A_0, B_0 , such that $A_0 \subset A, B_0 \subset B$, and $A_0 \cup B_0 =$ $A \cup B$.

(b) (Separation) Suppose A and B are disjoint Π^0_1 sets. Prove that there is a recursive set C, such that $A \subset C$ and $C \setminus B = \emptyset$.

Problem 5. Prove that $\{e \mid W_e \neq \emptyset\}$ is Σ_1^0 complete.